Dissociation and Re-Aggregation of Multicell-Ensheathed Fragments Responsible for Rapid Production of Massive Clumps of Leptothrix Sheaths

نویسندگان

  • Tatsuki Kunoh
  • Noriyuki Nagaoka
  • Ian R. McFarlane
  • Katsunori Tamura
  • Mohamed Y. El-Naggar
  • Hitoshi Kunoh
  • Jun Takada
چکیده

Species of the Fe/Mn-oxidizing bacteria Leptothrix produce tremendous amounts of microtubular, Fe/Mn-encrusted sheaths within a few days in outwells of groundwater that can rapidly clog water systems. To understand this mode of rapid sheath production and define the timescales involved, behaviors of sheath-forming Leptothrix sp. strain OUMS1 were examined using time-lapse video at the initial stage of sheath formation. OUMS1 formed clumps of tangled sheaths. Electron microscopy confirmed the presence of a thin layer of bacterial exopolymer fibrils around catenulate cells (corresponding to the immature sheath). In time-lapse videos, numerous sheath filaments that extended from the periphery of sheath clumps repeatedly fragmented at the apex of the same fragment, the fragments then aggregated and again elongated, eventually forming a large sheath clump comprising tangled sheaths within two days. In this study, we found that fast microscopic fragmentation, dissociation, re-aggregation and re-elongation events are the basis of the rapid, massive production of Leptothrix sheaths typically observed at macroscopic scales.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

What's New Is Old: Resolving the Identity of Leptothrix ochracea Using Single Cell Genomics, Pyrosequencing and FISH

Leptothrix ochracea is a common inhabitant of freshwater iron seeps and iron-rich wetlands. Its defining characteristic is copious production of extracellular sheaths encrusted with iron oxyhydroxides. Surprisingly, over 90% of these sheaths are empty, hence, what appears to be an abundant population of iron-oxidizing bacteria, consists of relatively few cells. Because L. ochracea has proven di...

متن کامل

Direct Adherence of Fe(III) Particles onto Sheaths of Leptothrix sp. Strain OUMS1 in Culture

Leptothrix species, one of the Fe/Mn-oxidizing bacteria, oxidize Fe(II) and produce extracellular, microtubuar, Fe-encrusted sheaths. Since protein(s) involved in Fe(II) oxidation is excreted from Leptothrix cells, the oxidation from Fe(II) to Fe(III) and subsequent Fe(III) deposition to sheaths have been thought to occur in the vicinity or within the sheaths. Previously, Fe(III) particles gene...

متن کامل

H2 Elimination and C-C Bond Cleavage of Propene: A Theoretical Research

Propene dissociation channels were characterized by ab initio CCSD(T)/6-311++g(d,p) calculations. Inthis work the detailed mechanism of propene dissociation to C2H4+CH2, C2H2+H+CH3, C2H2+CH4 andC3H3+H2+H have been investigated. According to our calculations, ten fragments can be classified intofive dissociated channels. Our results point out that two mechanisms come into play in the H2 eliminat...

متن کامل

Treatment of Leptothrix Cells with Ultrapure Water Poses a Threat to Their Viability

The genus Leptothrix, a type of Fe/Mn-oxidizing bacteria, is characterized by its formation of an extracellular and microtubular sheath. Although almost all sheaths harvested from natural aquatic environments are hollow, a few chained bacterial cells are occasionally seen within some sheaths of young stage. We previously reported that sheaths of Leptothrix sp. strain OUMS1 cultured in artificia...

متن کامل

Autolysis of Bacterial Cells Leads to Formation of Empty Sheaths by Leptothrix spp

The aquatic, Fe-oxidizing bacteria Leptothrix spp. produce uniquely shaped extracellular sheaths composed of organic bacterial polymers encrusted with inorganic elements from its aquatic environments. At the initial stage of sheath formation, bacterial cells were aligned in the sheath, but later most sheaths became empty. Here, we studied the mechanism of sheath hollowing by examining an isolat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016